Finitely generated ideals of the ring of integer-valued polynomials
نویسندگان
چکیده
منابع مشابه
On the Ring of Integer-valued Quasi-polynomials
The paper studies some properties of the ring of integer-valued quasi-polynomials. On this ring, theory of generalized Euclidean division and generalized GCD are presented. Applications to finite simple continued fraction expansion and Smith normal form of integral matrices with integer parameters are also given.
متن کاملPrincipal Ideals of Finitely Generated Commutative Monoids
We study the semigroups isomorphic to principal ideals of finitely generated commutative monoids. We define the concept of finite presentation for this kind of semigroups. Furthermore, we show how to obtain information on these semigroups from their presentations.
متن کاملIrreducible Polynomials and Factorization Properties of the Ring of Integer-Valued Polynomials
متن کامل
Integer-valued Polynomials
Let R be a Krull ring with quotient field K and a1, . . . , an in R. If and only if the ai are pairwise incongruent mod every height 1 prime ideal of infinite index in R does there exist for all values b1, . . . , bn in R an interpolating integer-valued polynomial, i.e., an f ∈ K[x] with f(ai) = bi and f(R) ⊆ R. If S is an infinite subring of a discrete valuation ring Rv with quotient field K a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1983
ISSN: 0021-8693
DOI: 10.1016/0021-8693(83)90213-2